Inverse Iteration for Purely Imaginary Eigenvalues with Application to the Detection of Hopf Bifurcations in Large-Scale Problems
نویسندگان
چکیده
The detection of a Hopf bifurcation in a large scale dynamical system that depends on a physical parameter often consists of computing the right-most eigenvalues of a sequence of large sparse eigenvalue problems. Guckenheimer et. al. (SINUM, 34, (1997) pp. 1-21) proposed a method that computes a value of the parameter that corresponds to a Hopf point without actually computing right-most eigenvalues. This method utilises a certain sum of Kronecker products and involves the solution of matrices of squared dimension, which is impractical for large scale applications. However, if good starting guesses are available for the parameter and the purely imaginary eigenvalue at the Hopf point, then efficient algorithms are available. In this paper, we propose a method for obtaining such good starting guesses, based on finding purely imaginary eigenvalues of a two-parameter eigenvalue problem (possibly arising after a linearisation process). The problem is formulated as an inexact inverse iteration method that requires the solution of a sequence of Lyapunov equations with low rank right hand sides. It is this last fact that makes the method feasible for large systems. The power of our method is tested on four numerical examples.
منابع مشابه
Shift-and-invert iteration for purely imaginary eigenvalues with application to the detection of Hopf Bifurcations in large scale problems
The detection of a Hopf bifurcation in a large scale dynamical system that depends on a physical parameter often consists of computing the right-most eigenvalues of a sequence of large sparse eigenvalue problems. This is not only an expensive operation, but the computation of right-most eigenvalues is often not reliable for the commonly used methods for large sparse matrices. In the literature ...
متن کاملA reflection on the implicitly restarted Arnoldi method for computing eigenvalues near a vertical line
In this article, we will study the link between a method for computing eigenvalues closest to the imaginary axis and the implicitly restarted Arnoldi method. The extension to eigenvalues closest to a vertical line is straightforward, by incorporating a shift. Without loss of generality we will restrict ourselves here to the imaginary axis. In a recent publication, Meerbergen and Spence discusse...
متن کاملNormal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملLyapunov Inverse Iteration for Identifying Hopf Bifurcations in Models of Incompressible Flow
The identification of instability in large-scale dynamical systems caused by Hopf bifurcation is difficult because of the problem of identifying the rightmost pair of complex eigenvalues of large sparse generalized eigenvalue problems. A new method developed in [Meerbergen and Spence, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 19821999] avoids this computation, instead performing an inverse ite...
متن کاملSymmetry Breaking Hopf Bifurcations in Equations with O(2) Symmetry with Application to the Kuramoto-Sivashinsky Equation
In problems with O(2) symmetry, the Jacobian matrix at nontrivial steady state solutions with Dn symmetry always has a zero eigenvalue due to the group orbit of solutions. We consider bifurcations which occur when complex eigenvalues also cross the imaginary axis and develop a numerical method which involves the addition of a new variable, namely the velocity of solutions drifting round the gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 31 شماره
صفحات -
تاریخ انتشار 2010